3.257 \(\int \frac{x^2 (a+b \sin ^{-1}(c x))^2}{(d-c^2 d x^2)^{5/2}} \, dx\)

Optimal. Leaf size=332 \[ \frac{i b^2 \sqrt{1-c^2 x^2} \text{PolyLog}\left (2,-e^{2 i \sin ^{-1}(c x)}\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{b x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{2 b \sqrt{1-c^2 x^2} \log \left (1+e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \sin ^{-1}(c x)\right )^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac{b^2 x}{3 c^2 d^2 \sqrt{d-c^2 d x^2}}-\frac{b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{3 c^3 d^2 \sqrt{d-c^2 d x^2}} \]

[Out]

(b^2*x)/(3*c^2*d^2*Sqrt[d - c^2*d*x^2]) - (b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(3*c^3*d^2*Sqrt[d - c^2*d*x^2])
- (b*x^2*(a + b*ArcSin[c*x]))/(3*c*d^2*Sqrt[1 - c^2*x^2]*Sqrt[d - c^2*d*x^2]) + (x^3*(a + b*ArcSin[c*x])^2)/(3
*d*(d - c^2*d*x^2)^(3/2)) + ((I/3)*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(c^3*d^2*Sqrt[d - c^2*d*x^2]) - (2
*b*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*Log[1 + E^((2*I)*ArcSin[c*x])])/(3*c^3*d^2*Sqrt[d - c^2*d*x^2]) + ((I
/3)*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, -E^((2*I)*ArcSin[c*x])])/(c^3*d^2*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.352305, antiderivative size = 332, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.31, Rules used = {4681, 4703, 4675, 3719, 2190, 2279, 2391, 288, 216} \[ \frac{i b^2 \sqrt{1-c^2 x^2} \text{PolyLog}\left (2,-e^{2 i \sin ^{-1}(c x)}\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{b x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{2 b \sqrt{1-c^2 x^2} \log \left (1+e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \sin ^{-1}(c x)\right )^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac{b^2 x}{3 c^2 d^2 \sqrt{d-c^2 d x^2}}-\frac{b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{3 c^3 d^2 \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(5/2),x]

[Out]

(b^2*x)/(3*c^2*d^2*Sqrt[d - c^2*d*x^2]) - (b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(3*c^3*d^2*Sqrt[d - c^2*d*x^2])
- (b*x^2*(a + b*ArcSin[c*x]))/(3*c*d^2*Sqrt[1 - c^2*x^2]*Sqrt[d - c^2*d*x^2]) + (x^3*(a + b*ArcSin[c*x])^2)/(3
*d*(d - c^2*d*x^2)^(3/2)) + ((I/3)*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(c^3*d^2*Sqrt[d - c^2*d*x^2]) - (2
*b*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*Log[1 + E^((2*I)*ArcSin[c*x])])/(3*c^3*d^2*Sqrt[d - c^2*d*x^2]) + ((I
/3)*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, -E^((2*I)*ArcSin[c*x])])/(c^3*d^2*Sqrt[d - c^2*d*x^2])

Rule 4681

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(d*f*(m + 1)), x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x
^2)^FracPart[p])/(f*(m + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSi
n[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p
 + 3, 0] && NeQ[m, -1]

Rule 4703

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + (-Dist[(f^2*(m - 1))/(2*e*(p +
1)), Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n, x], x] + Dist[(b*f*n*d^IntPart[p]*(d + e*x^2
)^FracPart[p])/(2*c*(p + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSi
n[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && Gt
Q[m, 1]

Rule 4675

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> -Dist[e^(-1), Subst[In
t[(a + b*x)^n*Tan[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 3719

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*(m + 1)), x
] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*(e + f*x)))/(1 + E^(2*I*(e + f*x))), x], x] /; FreeQ[{c, d, e, f}, x] &&
 IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx &=\frac{x^3 \left (a+b \sin ^{-1}(c x)\right )^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}-\frac{\left (2 b c \sqrt{1-c^2 x^2}\right ) \int \frac{x^3 \left (a+b \sin ^{-1}(c x)\right )}{\left (1-c^2 x^2\right )^2} \, dx}{3 d^2 \sqrt{d-c^2 d x^2}}\\ &=-\frac{b x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \sin ^{-1}(c x)\right )^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac{\left (b^2 \sqrt{1-c^2 x^2}\right ) \int \frac{x^2}{\left (1-c^2 x^2\right )^{3/2}} \, dx}{3 d^2 \sqrt{d-c^2 d x^2}}+\frac{\left (2 b \sqrt{1-c^2 x^2}\right ) \int \frac{x \left (a+b \sin ^{-1}(c x)\right )}{1-c^2 x^2} \, dx}{3 c d^2 \sqrt{d-c^2 d x^2}}\\ &=\frac{b^2 x}{3 c^2 d^2 \sqrt{d-c^2 d x^2}}-\frac{b x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \sin ^{-1}(c x)\right )^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac{\left (2 b \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int (a+b x) \tan (x) \, dx,x,\sin ^{-1}(c x)\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{\left (b^2 \sqrt{1-c^2 x^2}\right ) \int \frac{1}{\sqrt{1-c^2 x^2}} \, dx}{3 c^2 d^2 \sqrt{d-c^2 d x^2}}\\ &=\frac{b^2 x}{3 c^2 d^2 \sqrt{d-c^2 d x^2}}-\frac{b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{b x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \sin ^{-1}(c x)\right )^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{\left (4 i b \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{2 i x} (a+b x)}{1+e^{2 i x}} \, dx,x,\sin ^{-1}(c x)\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}\\ &=\frac{b^2 x}{3 c^2 d^2 \sqrt{d-c^2 d x^2}}-\frac{b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{b x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \sin ^{-1}(c x)\right )^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{2 b \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}+\frac{\left (2 b^2 \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \log \left (1+e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}\\ &=\frac{b^2 x}{3 c^2 d^2 \sqrt{d-c^2 d x^2}}-\frac{b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{b x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \sin ^{-1}(c x)\right )^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{2 b \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{\left (i b^2 \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\log (1+x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}\\ &=\frac{b^2 x}{3 c^2 d^2 \sqrt{d-c^2 d x^2}}-\frac{b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{b x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \sin ^{-1}(c x)\right )^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}-\frac{2 b \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}+\frac{i b^2 \sqrt{1-c^2 x^2} \text{Li}_2\left (-e^{2 i \sin ^{-1}(c x)}\right )}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.802718, size = 303, normalized size = 0.91 \[ \frac{-i b^2 \left (1-c^2 x^2\right )^{3/2} \text{PolyLog}\left (2,-e^{2 i \sin ^{-1}(c x)}\right )-a^2 c^3 x^3+a b \sqrt{1-c^2 x^2}-a b c^2 x^2 \sqrt{1-c^2 x^2} \log \left (1-c^2 x^2\right )+a b \sqrt{1-c^2 x^2} \log \left (1-c^2 x^2\right )+b \sin ^{-1}(c x) \left (-2 a c^3 x^3+b \sqrt{1-c^2 x^2}+2 b \left (1-c^2 x^2\right )^{3/2} \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )\right )+b^2 c^3 x^3+i b^2 \left (i c^3 x^3+c^2 x^2 \sqrt{1-c^2 x^2}-\sqrt{1-c^2 x^2}\right ) \sin ^{-1}(c x)^2-b^2 c x}{3 c^3 d^2 \left (c^2 x^2-1\right ) \sqrt{d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^2*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(5/2),x]

[Out]

(-(b^2*c*x) - a^2*c^3*x^3 + b^2*c^3*x^3 + a*b*Sqrt[1 - c^2*x^2] + I*b^2*(I*c^3*x^3 - Sqrt[1 - c^2*x^2] + c^2*x
^2*Sqrt[1 - c^2*x^2])*ArcSin[c*x]^2 + b*ArcSin[c*x]*(-2*a*c^3*x^3 + b*Sqrt[1 - c^2*x^2] + 2*b*(1 - c^2*x^2)^(3
/2)*Log[1 + E^((2*I)*ArcSin[c*x])]) + a*b*Sqrt[1 - c^2*x^2]*Log[1 - c^2*x^2] - a*b*c^2*x^2*Sqrt[1 - c^2*x^2]*L
og[1 - c^2*x^2] - I*b^2*(1 - c^2*x^2)^(3/2)*PolyLog[2, -E^((2*I)*ArcSin[c*x])])/(3*c^3*d^2*(-1 + c^2*x^2)*Sqrt
[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.303, size = 3277, normalized size = 9.9 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(5/2),x)

[Out]

-4/3*I*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^3/d^3/(c^2*x^2-1)*arcsin(c*x)+I*b^2*(-d*(c^2*x^2-1))^(1
/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^3*arcsin(c*x)^2*(-c^2*x^2+1)^(1/2)*x^6-2*I*b^2*(-d*(c^2
*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c*arcsin(c*x)^2*(-c^2*x^2+1)^(1/2)*x^4+4/3*I*b
^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)/c*arcsin(c*x)^2*(-c^2*x^2+1)^(1/2)*
x^2-1/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^2*arcsin(c*x)*(-c^2*x^
2+1)*x^5-1/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^2*(-c^2*x^2+1)*x^
5-1/3*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*x^3+1/3*a^2/c^2/d*x/(-c^2*d*
x^2+d)^(3/2)-1/3*a^2/c^2/d^2*x/(-c^2*d*x^2+d)^(1/2)+2*I*a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10
*c^4*x^4-5*c^2*x^2+1)*c^3*arcsin(c*x)*(-c^2*x^2+1)^(1/2)*x^6-4*I*a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c
^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c*arcsin(c*x)*(-c^2*x^2+1)^(1/2)*x^4+8/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^
8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)/c*arcsin(c*x)*(-c^2*x^2+1)^(1/2)*x^2+1/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/
d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*(-c^2*x^2+1)*x^3-1/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*
x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^4*arcsin(c*x)*x^7-2/3*I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/
c^3/d^3/(c^2*x^2-1)*arcsin(c*x)^2-1/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x
^2+1)/c^3*arcsin(c*x)^2*(-c^2*x^2+1)^(1/2)+1/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^
4-5*c^2*x^2+1)*arcsin(c*x)*(-c^2*x^2+1)*x^3-4/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x
^4-5*c^2*x^2+1)/c*x^2*(-c^2*x^2+1)^(1/2)+2*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*
c^2*x^2+1)*c*(-c^2*x^2+1)^(1/2)*x^4+2/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2
*x^2+1)*c^2*arcsin(c*x)*x^5-I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^3*
(-c^2*x^2+1)^(1/2)*x^6-1/3*I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^3/d^3/(c^2*x^2-1)*polylog(2,-(I*c
*x+(-c^2*x^2+1)^(1/2))^2)-b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c*arcsin
(c*x)*(-c^2*x^2+1)^(1/2)*x^4+b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)/c*arc
sin(c*x)*(-c^2*x^2+1)^(1/2)*x^2+2/3*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^3/d^3/(c^2*x^2-1)*arcsin(c
*x)*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2))^2)+2*a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*
x^2+1)*c^4*arcsin(c*x)*x^7-a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c*(-c^2
*x^2+1)^(1/2)*x^4-2*a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^2*arcsin(c*x
)*x^5+a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)/c*(-c^2*x^2+1)^(1/2)*x^2+2/3
*a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/d^3/(c^2*x^2-1)*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2))^2)-1/3*I*a*
b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^4*x^7+2/3*I*a*b*(-d*(c^2*x^2-1))^(
1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^2*x^5-2/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-
9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)/c^3*arcsin(c*x)*(-c^2*x^2+1)^(1/2)+b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8
-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^2*x^5+1/3*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-
5*c^2*x^2+1)*arcsin(c*x)^2*x^3-2/3*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)
*c^4*x^7-2/3*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*(-c^2*x^2+1)*x^3+1/3*
b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)/c^2*(-c^2*x^2+1)*x-1/3*b^2*(-d*(c^
2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)/c^3*arcsin(c*x)*(-c^2*x^2+1)^(1/2)+1/3*b^2*(-
d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^2*(-c^2*x^2+1)*x^5+b^2*(-d*(c^2*x^2-1)
)^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^4*arcsin(c*x)^2*x^7-b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/
(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^2*arcsin(c*x)^2*x^5+1/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8
*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)/c^3*(-c^2*x^2+1)^(1/2)-1/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-
9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*arcsin(c*x)*x^3+2/3*a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c
^4*x^4-5*c^2*x^2+1)*arcsin(c*x)*x^3-1/3*a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x
^2+1)/c^3*(-c^2*x^2+1)^(1/2)-1/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)
*x^3

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (b^{2} x^{2} \arcsin \left (c x\right )^{2} + 2 \, a b x^{2} \arcsin \left (c x\right ) + a^{2} x^{2}\right )} \sqrt{-c^{2} d x^{2} + d}}{c^{6} d^{3} x^{6} - 3 \, c^{4} d^{3} x^{4} + 3 \, c^{2} d^{3} x^{2} - d^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

integral(-(b^2*x^2*arcsin(c*x)^2 + 2*a*b*x^2*arcsin(c*x) + a^2*x^2)*sqrt(-c^2*d*x^2 + d)/(c^6*d^3*x^6 - 3*c^4*
d^3*x^4 + 3*c^2*d^3*x^2 - d^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \left (a + b \operatorname{asin}{\left (c x \right )}\right )^{2}}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(5/2),x)

[Out]

Integral(x**2*(a + b*asin(c*x))**2/(-d*(c*x - 1)*(c*x + 1))**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2*x^2/(-c^2*d*x^2 + d)^(5/2), x)